

Revision: 25/06/2021 Seite 1 von 9

Technische Daten:

Basis	Vinylester-Styrol f	rei						
Konsistenz	Stabile Paste							
Aushärtungssystem	Chemische Reaktion							
(1) Temperatur der Kartusche = 15°C (2) Aushärtungszeit auf trockener Oberfläche (20°C/65% R.H.) (x2 auf nasser Oberfläche)	Temperatur ≥-10°C (1) ≥-5°C ≥0°C ≥5°C ≥10°C ≥20°C ≥30°C ≥30°C ≥35°C ≥40°C	Start 90 min 90 min 45 min 25 min 15 min 6 min 4 min 2 min 1,5 min	Vollständige Aushärtung (2) 24 u 14 u 7h 2 u 80 min 45 min 25 min 20 min 15 min					
Spezifische Schwerkraft	1,77 g/cm ³							
Temperaturbeständigkeit	- 40°C to + 120°C	;						
Elastizitätsmodul	14000 N/mm²							
Maximale Biegefestigkeit	15 N/mm²							
Maximale Druckfestigkeit	100 N/mm²							

Produktbeschreibung

SOUDAFIX VE400-SF ist ein zweikomponentiges Verankerungsharz zur drucklosen Befestigung von Gewindestangen (ETA: M8-M30), Bolzen, Bewehrungsstäben (ETA: Ø8-Ø32), Gewindekragen, Profilen usw. in verschiedenen Voll- und Hohlmaterialien wie gerissenem und ungerissenem Beton, Vollziegel, Hohlziegel, Porenbeton, Naturstein (siehe Anmerkungen), Gipskartonwänden usw.

Produkteigenschaften

- Einfache Anwendung
- Schnelle Aushärtung
- Breiter Einsatzbereich, auch in nassen Bohrlöchern, unter Wasser (außer Meerwasser) und bei Temperaturen bis -10°C
- Freigegeben für Überkopfinstallation
- Styrolfrei (geruchsarm)
- Mehrfach einsatzfähige Kartusche durch einfachen Austausch des statischen Mischers
- Wasserdichte und wasserundurchlässige Befestigung
- Hohe chemische Beständigkeit

- Feuerwiderstandsklasse F120 (M8-M30)
- Europäische Technische Bewertung ETA-10/0167 basierend auf EAD 330499-00-0601 zur Anwendung in gerissenem und ungerissenem Beton.
- Europäische Technische Bewertung ETA-12/0558 auf der Grundlage von EAD 330087-00-0601 zur Anwendung bei nachträglich eingebauten Bewehrungsanschlüssen.
- Luftemissionsklasse A+ in Innenräumen

Anwendung

Sicherung von schweren Lasten in Voll- und Hohlbaustoffen. Druckfreie Verankerung auch in Randnähe. Kann als Reparaturmörtel verwendet werden.

Lieferform:

Farbe: dunkelgrau nach dem Mischen Kartusche: 280-ml-Kartusche für Standard-Skelettpistole, 380 ml zur Verwendung mit spezieller Zweikomponenten-Pistole.

Hinweis: Dieses technische Datenblatt ersetzt alle vorherigen Versionen. Die Anweisungen in dieser Dokumentation basieren auf unseren Tests und Erfahrungen und wurden nach bestem Wissen und Gewissen erstellt. Aufgrund der Vielzahl an verschiedenen Materialien und Untergründen sowie der vielen unterschiedlichen möglichen Anwendungen, die außerhalb unserer Kontrolle liegen, übernehmen wir keinerlei Verantwortung für die erzielten Ergebnisse. Da die Konstruktion und die Beschaffenheit des Substrats und die Verarbeitungsbedingungen außerhalb unserer Kontrolle liegen, übernehmen wir keinerlei Haftung für diese Publikation. In jedem Falle wird empfohlen, vor der Anwendung entsprechende Tests durchzuführen. Soudal behält sich das Recht vor, seine Produkte ohne vorherige Ankündigung zu modifizieren.

Revision: 25/06/2021 Seite 2 von 9

Lagerstabilität

18 Monate bei ungeöffneter Verpackung an einem kühlen und trockenen Lagerort bei Temperaturen zwischen +5 °C und +25 °C.

Untergründe

Untergründe: alle üblichen porösen Bauuntergründe, schlechte Haftung auf glatten, nicht porösen Materialien.

Beschaffenheit: : tragfähig, sauber, trocken, staubund fettfrei

Verarbeitung

Anwendungsmethode: Standard-Skelettpistole für 280-ml-Kartusche, spezielle 2-Komponenten-Pistole für 380 ml, vorzugsweise schwere Ausführung.

Verarbeitungstemperatur: -10°C bis +40°C

Vor der Aushärtung: Überschüssiges Produkt abwischen und danach mit Testbenzin oder Aceton reinigen.

Nach der Aushärtung: Es wird empfohlen, das Produkt vollständig aushärten zu lassen, so dass es leicht mechanisch mit Hammer und Meißel entfernt werden kann.

Reparatur: mit dem gleichen Material

Sicherheitsempfehlungen

Wenden Sie die üblichen Vorsichtsmaßnahmen zur Arbeitshygiene an.

Nur in gut belüfteten Räumen verwenden. Konsultieren Sie das Etikett für weitere Informationen.

Bemerkungen:

Auf porösen Untergründen wie Naturstein besteht die Gefahr von Fleckenbildung.

Anweisungen zur Verwendung:

- Bohrloch mit empfohlener Tiefe bohren
- Bohrloch mit Bürste und Luftpumpe gründlich reinigen
- Statischen Mischer auf Kartusche schrauben
- Geben Sie die ersten 10 cm des Produkts als Abfall (auf einem Stück Karton) ab, bis eine gleichmäßige Farbe (dunkelgrau) erreicht ist und das Produkt gut vermischt ist.
- Massiver Stein: Füllen Sie das Bohrloch von unten nach oben. Hohlstein: Hülse einsetzen und von unten nach oben füllen, so dass das Harz durch die winzigen Löcher der Hülse gepresst wird
- Ankerstab mit drehender Links-Rechts-Bewegung einführen
- Überprüfen Sie das Bohrloch auf ausreichende Füllung
- Aushärtungszeit beachten. Den Ankerstab während der Aushärtung nicht bewegen
- Lassen Sie auch den Produktüberschuss ausheilen. Entfernen Sie es nach dem Aushärten mechanisch mit Hammer und Meißel
- Komponente einbauen, das richtige Drehmoment anwenden

Hinweis: Dieses technische Datenblatt ersetzt alle vorherigen Versionen. Die Anweisungen in dieser Dokumentation basieren auf unseren Tests und Erfahrungen und wurden nach bestem Wissen und Gewissen erstellt. Aufgrund der Vielzahl an verschiedenen Materialien und Untergründen sowie der vielen unterschiedlichen möglichen Anwendungen, die außerhalb unserer Kontrolle liegen, übernehmen wir keinerlei Verantwortung für die erzielten Ergebnisse. Da die Konstruktion und die Beschaffenheit des Substrats und die Verarbeitungsbedingungen außerhalb unserer Kontrolle liegen, übernehmen wir keinerlei Haftung für diese Publikation. In jedem Falle wird empfohlen, vor der Anwendung entsprechende Tests durchzuführen. Soudal behält sich das Recht vor, seine Produkte ohne vorherige Ankündigung zu modifizieren.

Revision: 25/06/2021 Seite 3 von 9

Installationsparameter Gewindestangen:

Durchmesser Gewindestange	d	mm	M8	M10	M12	M16	M20	M24	M27	M30
Bohrer-Durchmesser	D ₀	mm	10	12	14	18	24	28	32	35
Min. Verankerungstiefe	h _{ef,min}	mm	60	60	70	80	90	96	108	120
Max. Verankerungstiefe	h _{ef,max}	mm	160	200	240	320	400	480	540	600
Min. Randabstand	Cmin	mm	40	50	60	80	100	120	135	150
Min. Achsabstand	Smin	mm	40	50	60	80	100	120	135	150
Anzugsdrehmoment	T _{inst}	Nm	10	20	40	80	120	160	180	200

Installationsparameter Bewehrungsstäbe:

Diameter reinforcement bar	d	mm	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Bohrer-Durchmesser	D ₀	mm	12	14	16	18	20	24	32	35	40
Min. Verankerungstiefe	h _{ef,min}	mm	60	60	70	75	80	90	100	112	128
Max. Verankerungstiefe	h _{ef,max}	mm	160	200	240	280	320	400	500	580	640
Min. Randabstand	Cmin	mm	40	50	60	70	80	100	125	140	160
Min. Achsabstand	S _{min}	mm	40	50	60	70	80	100	125	140	160

Hinweis: Dieses technische Datenblatt ersetzt alle vorherigen Versionen. Die Anweisungen in dieser Dokumentation basieren auf unseren Tests und Erfahrungen und wurden nach bestem Wissen und Gewissen erstellt. Aufgrund der Vielzahl an verschiedenen Materialien und Untergründen sowie der vielen unterschiedlichen möglichen Anwendungen, die außerhalb unserer Kontrolle liegen, übernehmen wir keinerlei Verantwortung für die erzielten Ergebnisse. Da die Konstruktion und die Beschaffenheit des Substrats und die Verarbeitungsbedingungen außerhalb unserer Kontrolle liegen, übernehmen wir keinerlei Haftung für diese Publikation. In jedem Falle wird empfohlen, vor der Anwendung entsprechende Tests durchzuführen. Soudal behält sich das Recht vor, seine Produkte ohne vorherige Ankündigung zu modifizieren.

Revision: 25/06/2021 Seite 4 von 9

Table C1: Characteristic values for steel tension and shear resistance of threaded rods											
Diameter threaded rods			М8	M10	M12	M16	M20	M24	M27	M30	
Characteristic values for tension, steel failure											
Characteristic tensile strength, steel class 4.6 en 4.8	N_{Rks}	kN	15	23	34	63	98	141	184	224	
Characteristic tensile strength, steel class 5.6 en 5.8	N_{Rks}	kN	18	29	42	78	122	176	230	280	
Characteristic tensile strength, steel class 8.8	N_{Rks}	kN	29	46	67	125	196	282	368	449	
Characteristic tensile strength, stainless steel A2, A4 and HCR class 50	N_{Rks}	kN	18	29	42	79	123	177	230	281	
Characteristic tensile strength, stainless steel A2, A4 and HCR class 70	N_{Rks}	kN	26	41	59	110	171	247	-	-	
Characteristic tensile strength, stainless steel A4 and HCR class 80	N_{Rks}	kN	29	46	67	126	196	282	-	-	
Characteristic values for tension, partial factor											
Partial factor steel class 4.6	¥ _{Ms,N} 1)					2	.0				
Partial factor steel class 4.8	Y _{Ms,N} 1)					1	.5				
Partial factor steel class 5.6	¥ _{Ms,N} 1)					2	.0				
Partial factor steel class 5.8	¥ _{Ms,N} 1)					1	.5				
Partial factor steel class 8.8	¥ _{Ms,N} 1)					1	.5				
Partial factor stainless steel A2, A4 and HCR class 50	¥ _{Ms,N} 1)					2.	86				
Partial factor stainless steel A2, A4 and HCR class 70	¥ _{Ms,N} 1)		1.87								
Partial factor stainless steel A4 and HCR class 80	Y _{Ms,N} 1)		1.6								
Characteristic shear resistance, steel failure	_		•								
Steel failure without lever arm											
Characteristic shear resistance, steel class 4.6 and 4.8	$V_{Rk,s}^0$	kN	7	12	17	31	49	71	92	112	
Characteristic shear resistance, steel class 5.6 and 5.8	$V_{Rk,s}^0$	kN	9	15	21	39	61	88	115	140	
Characteristic shear resistance, steel class 8.8	V_{Rks}^0	kN	15	23	34	63	98	141	184	224	
Characteristic shear resistance, stainless steel A2, A4 and HCR class 50	$V_{Rk,s}^0$	kN	13	20	30	55	86	124	115	140	
Characteristic shear resistance, stainless steel A2, A4 and HCR class 70	$V_{Rk,s}^0$	kN	13	20	30	55	86	124	115	140	
Characteristic shear resistance, stainless steel A4 and HCR class 80	$V_{Rk,s}^0$	kN	13	20	30	55	86	124	115	140	
Steel failure with lever arm											
Characteristic shear resistance, steel class 4.6 and 4.8	$M^0_{Rk,s}$	kN	7	12	17	31	49	71	92	112	
Characteristic shear resistance, steel class 5.6 and 5.8	$M^0_{Rk,s}$	kN	9	15	21	39	61	88	115	140	
Characteristic shear resistance, steel class 8.8	$M^0_{Rk,s}$	kN	15	23	34	63	98	141	184	224	
Characteristic shear resistance, stainless steel A2, A4 and HCR class 50	$M^0_{Rk,s}$	kN	13	20	30	55	86	124	115	140	
Characteristic shear resistance, stainless steel A2, A4 and HCR class 70	$M^0_{Rk,s}$	kN	13	20	30	55	86	124	115	140	
Characteristic shear resistance, stainless steel A4 and HCR class 80	$M^0_{Rk,s}$	kN	13	20	30	55	86	124	115	140	
Characteristic shear resistance, partial factor											
Partial factor steel class 4.6	Y _{Ms,V} 1)					1.0	67				
Partial factor steel class 4.8	Y _{Ms,V} 1)					1.3	25				
Partial factor steel class 5.6	Y _{Ms,V} 1)				1.0	67					
Partial factor steel class 5.8	¥ _{Ms,V} 1)					1.3	25				
Partial factor steel class 8.8	¥ _{Ms,V} 1)					1.3	25				
Partial factor stainless steel A2, A4 and HCR class 50	Y _{Ms,V} 1)					2.	38				
Partial factor stainless steel A2, A4 and HCR class 70	Y Ms,V 1)					1.	56				
Partial factor stainless steel A4 and HCR class 80	Y _{Ms,∨} 1)		1.33								

Hinweisn@iesesiteenigetienDatenblatt ersetzt alle vorherigen Versionen. Die Anweisungen in dieser Dokumentation basieren auf unseren Tests und Erfahrungen und wurden nach bestem Wissen und Gewissen erstellt. Aufgrund der Vielzahl an verschiedenen Materialien und Untergründen sowie der vielen unterschiedlichen möglichen Anwendungen, die außerhalb unserer Kontrolle liegen, übernehmen wir keinerlei Verantwortung für die erzielten Ergebnisse. Da die Konstruktion und die Beschaffenheit des Substrats und die Verarbeitungsbedingungen außerhalb unserer Kontrolle liegen, übernehmen wir keinerlei Haftung für diese Publikation. In jedem Falle wird empfohlen, vor der Anwendung entsprechende Tests durchzuführen. Soudal behält sich das Recht vor, seine Produkte ohne vorherige Ankündigung zu modifizieren.

Revision: 25/06/2021 Seite 5 von 9

	Tabel C2: Characterist	ic values o	f tension lo	oads unde	r static. qu	asi-static a	nd seismi	c action					
Diameter threaded				M8	M10	M12	M16	M20	M24	M27	M30		
Characteristic values	s of tension loads, steel failure			<u> </u>									
	·	N _{Rks}	kN				See ta	able C1					
Characteristic tension	on resistance	N _{Rks.eq}	kN				1,0 *	N _{Rk,s}					
Partial factor		Y _{Ms,N}	-					able C1					
Combined pull-out ar	nd concrete failure			•									
Characteristic bond re	esistance in non-cracked concrete C20/25												
	Temperature range I: 40°C to 24°C	T _{Rkucr}	N/mm ²	10	12	12	12	12	11	10	9		
Dry and wet concrete	Temperature range II: 80°C to 50°C	TRkucr	N/mm ²	7.5	9	9	9	9	8.5	7.5	6.5		
	Temperature range III: 120°C to 72°C	TRkucr	N/mm ²	5.5	6.5	6.5	6.5	6.5	6.5	5.5	5.0		
	Temperature range I: 40°C tot 24°C	TRkucr	N/mm ²	7.5	8.5	8.5	8.5						
Flooded bore hole	Temperature range II: 80°C tot 50°C	TRkucr	N/mm ²	5.5	6.5	6.5	65	1	d				
	Temperature range III: 120°C tot 72°C	TRkucr	N/mm ²	4.0	5.0	5.0	5.0						
Characteristic bond re	esistance in cracked concrete C20/25	•	•			•		•					
		T _{Rkcr}	N/mm ²	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5		
	Temperature range I: 40°C to 24°C	T _{Rk,cr,eq}	N/mm ²	2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5		
	T II 0000 . 5000	T _{Rkcr}	N/mm ²	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5		
Dry and wet concrete	Temperature range II: 80°C to 50°C	T _{Rk,cr,eq}	N/mm ²	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1		
		T _{Rkcr}	N/mm ²	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5		
	Temperature range III: 120°C to 72°C	T _{Rk,cr,eq}	N/mm ²	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4		
		TRKcr	N/mm ²	4,0	4,0	5,5	5,5						
	Temperature range I: 40°C to 24°C	T _{Rkcr,eq}	N/mm ²	2,5	2,5	3,7	3,7	No soutous and declared					
		T _{Rkcr}	N/mm ²	2,5	3,0	4,0	4,0						
Flooded bore hole	Temperature range II: 80°C to 50°C	T _{Rk,cr,eq}	N/mm ²	1,6	1,9	2,7	2,7	No performance declared					
	Temperature range III: 120°C to 72°C	T _{Rkcr}	N/mm ²	2,0	2,5	3,0	3,0						
		T _{Rk,cr,eq}	N/mm ²	1,3	1,6	2,0	2,0	Ì					
		C25/30				<u> </u>	1.	02					
		C30/37					1.	04					
Increasing factors for	concrete (only static and quasi-static	C35/45					1.	07					
action) Ψ _c		C40/50					1.	08					
		C45/55					1.	09					
		C50/60					1.	10					
Concrete conce failu	re	•	-										
Non-cracked concrete	9	k _{ucr,N}	-				11	1,0					
Cracked concrete		k _{cr,N}	-				7	',7					
Edge distance		C _{cr,N}	mm				1,5	· h _{ef}					
Axial distance		S _{cr,N}	mm	2 . C _{cr,N}									
Splitting													
-	h/h _{ef} ≥ 2,0	C _{cr,sp}	mm				1,0	· h _{ef}					
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	mm					2,5 - h/h _{ef)}					
	h/h _{ef} ≤ 3,0	C _{cr,sp}	mm					· h _{ef}					
Axial distance	-		mm	2 . C _{Cr,SP}									
Installation factor (dry	and wet concrete)	S _{cr,sp}	inst	1.0									
Installation factor (floo	·	<u> </u>	inst		1	,4		1	No performa	nce declare	d		

Hinweis: Dieses technische Datenblatt ersetzt alle vorherigen Versionen. Die Anweisungen in dieser Dokumentation basieren auf unseren Tests und Erfahrungen und wurden nach bestem Wissen und Gewissen erstellt. Aufgrund der Vielzahl an verschiedenen Materialien und Untergründen sowie der vielen unterschiedlichen möglichen Anwendungen, die außerhalb unserer Kontrolle liegen, übernehmen wir keinerlei Verantwortung für die erzielten Ergebnisse. Da die Konstruktion und die Beschaffenheit des Substrats und die Verarbeitungsbedingungen außerhalb unserer Kontrolle liegen, übernehmen wir keinerlei Haftung für diese Publikation. In jedem Falle wird empfohlen, vor der Anwendung entsprechende Tests durchzuführen. Soudal behält sich das Recht vor, seine Produkte ohne vorherige Ankündigung zu modifizieren.

Revision: 25/06/2021 Seite 6 von 9

Table C3: Characteristic v	alues of shea	ar loads	under s	tatic, q	uasi-sta	itic and	seismi	ic actio	n				
Diameter threaded rod			M8	M10	M12	M16	M20	M24	M27	M30			
Steel failure without lever arm													
Characteristic shear resistance	V^0_{Rks}	kN	See table C1										
Characteristic shear resistance	$V_{Rk,s,eq}$	kN	0,70 . V ⁰ _{Rks}										
Partial factor	Y Ms,∨	-				See ta	ble C1						
Ductility factor	k ₇	-				1	,0						
Steel failure with lever arm													
Characteristic bending moment	$M^0_{k,s}$	Nm	See table C1										
	$M^0_{k,s,eq}$	Nm	No performance declared										
Partial factor	YN	1s,V	See table C1										
Concrete pry-out failure													
Factor	k ₈	-				2	.0						
Installation factor	Yinst	-				1	.0						
Concrete edge failure													
Effective length of fastener	I_{f}	mm			1.	_f = min(h	ef;8d _{non}	_n)					
Outside diameter of fastener	d _{nom}	mm	8	10	12	16	20	24	27	30			
Installation factor	Yinst	-	1.0										
Factor for annular gap	α_{gap}	-	0,5 (1,0) ¹⁾										

¹⁾ Value between brackets: see ETA-10/0167

Hinweis: Dieses technische Datenblatt ersetzt alle vorherigen Versionen. Die Anweisungen in dieser Dokumentation basieren auf unseren Tests und Erfahrungen und wurden nach bestem Wissen und Gewissen erstellt. Aufgrund der Vielzahl an verschiedenen Materialien und Untergründen sowie der vielen unterschiedlichen möglichen Anwendungen, die außerhalb unserer Kontrolle liegen, übernehmen wir keinerlei Verantwortung für die erzielten Ergebnisse. Da die Konstruktion und die Beschaffenheit des Substrats und die Verarbeitungsbedingungen außerhalb unserer Kontrolle liegen, übernehmen wir keinerlei Haftung für diese Publikation. In jedem Falle wird empfohlen, vor der Anwendung entsprechende Tests durchzuführen. Soudal behält sich das Recht vor, seine Produkte ohne vorherige Ankündigung zu modifizieren.

Soudal NV Everdongenlaan 18-20 2300 Turi Tel.: +32 (0)14-42.42.31 Fax: +32 (0)14-42.65.14 wv

Revision: 25/06/2021 Seite 7 von 9

	Table C6: Characteristic	c values o	f tension	loads u	nder sta	tic, quas	i-static a	nd seisn	nic actio	n				
Diameter rei	nforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure						<u> </u>	<u> </u>	<u> </u>						
		N_{Rks}	kN					A _s x f _{uk} 1)						
Characteristic t	tension resistance	N _{Rk,s,eq}	kN				1	,0 . A _s x f _{ul}	1)					
Cross section a	area	A_s	mm²	50	79	113	154	201	314	491	616	804		
Partiële veiligh	eidsfaktor	$\gamma_{Ms,N}$						1,4 ²⁾						
Combined pull-	out and concrete failure													
Characteristic b	bond resistance in non-cracked concret	e C20/25												
	Temperature range I: 40°C to 24°C	TRKucr	N/mm ²	10	12	12	12	12	12	11	10	8.5		
Dry and wet concrete	Temperature range II: 80°C to 50°C	TRK,ucr	N/mm ²	7.5	9	9	9	9	9	8.0	7.0	6.0		
001101010	Temperature range III: 120°C to 72°C	TRkucr	N/mm ²	5.5	6.5	6.5	6.5	6.5	6.5	6.0	5.0	4.5		
	Temperature range I: 40°C to 24°C	TRK,ucr	N/mm ²	7.5	8.5	8.5	8.5	8.5						
Flooded bore hole	Temperature range II: 80°C to 50°C	TRK,ucr	N/mm ²	5.5	6.5	6.5	6.5	6.5	No performance declared					
11010	Temperature range III: 120°C to 72°C	TRk,ucr	N/mm ²	4.0	5.0	5.0	5.0	5.0						
Characteristic t	bond resistance in cracked concrete C2	0/25												
	Temperature range I: 40°C to 24°C	TRkucr	N/mm ²	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5		
Daysand	Temperature range I: 40°C to 24°C	T _{Rk,ucr,eq}	N/mm^2	2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5		
Dry and wet concrete	Temperature range II: 80°C to 50°C	TRk,ucr	N/mm ²	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5		
	Temperature range II: 80°C to 50°C	T _{Rk,ucr,eq}	N/mm ²	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1		
	Temperature range III: 120°C to 72°C	TRK,ucr	N/mm ²	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5		
	Temperature range III: 120°C to 72°C	T _{Rk,ucr,eq}	N/mm ²	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4		
	Temperature range I: 40°C to 24°C	TRK,ucr	N/mm ²	4,0	4,0	5,5	5,5	5,5		_	-			
	Temperature range I: 40°C to 24°C	T _{Rk,ucr,eq}	N/mm ²	2,5	2,5	3,7	3,7	3,7						
Flooded bore hole	Temperature range II: 80°C to 50°C	TRKucr	N/mm^2	2,5	3,0	4,0	4,0	4,0	No performance declared					
liole	Temperature range II: 80°C to 50°C	T _{Rk,ucr,eq}	N/mm^2	1,6	1,9	2,7	2,7	2,7						
	Temperature range III: 120°C to 72°C	TRK,ucr	N/mm ²	2,0	2,5	3,0	3,0	3,0						
	Temperature range III: 120°C to 72°C	T _{Rk,ucr,eq}	N/mm ²	1,3	1,6	2,0	2,0	2,0						
	-	C25/30						1.02						
		C30/37						1.04						
Increasing fac	ctors for concrete (only static or quasi-	C35/45						1.07						
	static actions) Ψ_c	C40/50						1.08						
		C45/55						1.09						
		C50/60						1.10						
Concrete cone	e failure													
Non-cracked co	oncrete	k _{ucr,N}	-					11,0						
Cracked concre	ete	k _{cr,N}	-					7,7						
Edge distance		$C_{cr,N}$	mm	1,5 [·] h _{ef}										
Axial distance		$S_{cr,N}$	mm					2 . c _{cr,N}						
Splitting														
	h/h _{ef} ≥ 2,0	$C_{cr,sp}$	mm					1,0 h _{ef}						
Edge distance	2,0 > h/h _{ef} > 1,3	$C_{cr,sp}$	mm				2.	h _{ef} (2,5 - h	n/h _{ef)}					
	h/h _{ef} ≤ 3,0	$C_{cr,sp}$	mm					2,4 h _{ef}						
Axial distance		S _{cr,sp}	mm					2 . c _{cr,sp}						
Installation fact	tor (dry and wet concrete)	Yin	st	1.0					.2					
Installation fact	tor (flooded bore hole)	Yin	st			1,4			No	performa	nce decla	red		

 $^{^{\}rm 1)}\,f_{\rm uk}$ shell be taken from the specifications of reinforcing bars

Hinweis: Dieses technische Datenblatt ersetzt alle vorherigen Versionen. Die Anweisungen in dieser Dokumentation basieren auf unseren Tests und Erfahrungen und wurden nach bestem Wissen und Gewissen erstellt. Aufgrund der Vielzahl an verschiedenen Materialien und Untergründen sowie der vielen unterschiedlichen möglichen Anwendungen, die außerhalb unserer Kontrolle liegen, übernehmen wir keinerlei Verantwortung für die erzielten Ergebnisse. Da die Konstruktion und die Beschaffenheit des Substrats und die Verarbeitungsbedingungen außerhalb unserer Kontrolle liegen, übernehmen wir keinerlei Haftung für diese Publikation. In jedem Falle wird empfohlen, vor der Anwendung entsprechende Tests durchzuführen. Soudal behält sich das Recht vor, seine Produkte ohne vorherige Ankündigung zu modifizieren.

²⁾ In absence of national regulation

Revision: 25/06/2021 Seite 8 von 9

Tabel C7: Characteristic values of shear loads under static, quasi-static and seismic action											
Diameter reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm	Steel failure without lever arm										
Characteristic above registers	$V_{Rk,s}$	kN	$0,50 \times A_s \times f_{uk}^{1)}$								
Characteristic shear resistance	$V_{Rk,s,eq}$	kN	0,35 x A _s x f _{uk} 1)								
Cross section area	As	mm²	50	79	113	154	201	214	491	616	804
Partial factor	Y _{Ms,V}	-					1,5 ²⁾			•	•
Ductility factor	k ₇	-					1,0				
Steel failure with lever arm											
Characteristic bending moment	M^0_{Rks}	Nm	$1.2 \times W_{el} \times f_{uk}^{-1}$								
	$M^0_{Rk,s,eq}$	Nm	No performance declared								
Elastic section modulus	W _{el}	mm³	50	98	170	269	402	785	1534	2155	3217
Partial factor	Y Ms,∨		1,5 ²⁾								
Concrete pry-out failure											
Factor	k ₈	-					2.0				
Installation factor	Yinst	-					1,0				
Concrete edge failure	•										
Effective length of fastener	l _f	mm	I _f = min(h _{ef} ; 8 d _{nom})								
Outside diameter of fastener	d _{nom}	mm	8	10	12	14	16	20	25	28	32
Installation factor	Yinst	-	1.0								
Factor for annular gap	α_{gap}	-					0,5 (1,0) ³	3)			

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Hinweis: Dieses technische Datenblatt ersetzt alle vorherigen Versionen. Die Anweisungen in dieser Dokumentation basieren auf unseren Tests und Erfahrungen und wurden nach bestem Wissen und Gewissen erstellt. Aufgrund der Vielzahl an verschiedenen Materialien und Untergründen sowie der vielen unterschiedlichen möglichen Anwendungen, die außerhalb unserer Kontrolle liegen, übernehmen wir keinerlei Verantwortung für die erzielten Ergebnisse. Da die Konstruktion und die Beschaffenheit des Substrats und die Verarbeitungsbedingungen außerhalb unserer Kontrolle liegen, übernehmen wir keinerlei Haftung für diese Publikation. In jedem Falle wird empfohlen, vor der Anwendung entsprechende Tests durchzuführen. Soudal behält sich das Recht vor, seine Produkte ohne vorherige Ankündigung zu modifizieren.

Soudal NV Everdongenlaan 18-20 Tel.: +32 (0)14-42.42.31 Fax: +32 (0)14-42.65.14

²⁾ In absence of national regulation

³⁾ Value in brackets: see ETA-10/0167